
BOOLEAN OPERATIONS
AND CONDITIONALS
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Boolean Operations
§ !! The NOT Operator

– Pronounced either "not" or "bang"
– Reverses value of the bool

! print( !true );    // Outputs: false
! print( !false );   // Outputs: true
! print( !(!true) ); // Outputs: true (the double negative of true)

– Also called the "logical negation operator"
• This differentiates it from ~, the bitwise not operator
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§ &&! The AND Operator

– Returns true only if both operands are true
print( false && false );    // false
print( false && true  );    // false
print( true  && false );    // false
print( true  && true  );    // true 
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Boolean Operations
§ ||! The OR Operator

– Returns true if either operand is true
print( false && false );    // false
print( false && true  );    // true
print( true  && false );    // true
print( true  && true  );    // true 

– | (the pipe) is Shift-Backslash
• Just above the return or enter key on a US keyboard
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Boolean Operations
§ Shorting vs. Non-Shorting Boolean Operators

– && and || are shorting operators
• If the first operand of && is false, the second is not evaluated
• If the first operand of || is true, the second is not evaluated

– & and | are non-shorting operators
• Both operands are evaluated regardless of value

– & and | are also bitwise operators
• & and | compare each bit of the values passed into them
• Bitwise operators will be used much later when dealing with Unity 

layers and collisions
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Boolean Operations
§ Combining Boolean Operations

– Can combine several on a single line
! bool tf  = true || false && true;

– Must follow order of operations
!! NOT
&! Non-Shorting AND / Bitwise AND
|! Non-Shorting OR  / Bitwise OR
&&! AND
||! OR

– The line above would be interpreted as:
! bool tf  = true || (false && true);! // true

– It's best to always use parentheses to enforce the order in 
which you want the evaluation to take place!
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COMPARISON BY VALUE OR REFERENCE

§ Simple variables are compared by value
– bool, int, float, char, string, Vector3, Color, Quaternion

§ More complex variables are compared by reference
– When variables are compared by reference, the comparison 

is not of their internal values but of whether they point to the 
same location in memory

– GameObject, Material, Renderer, HelloWorld (and other C# 
classes you write)
 1 GameObject go0 = Instantiate( boxPrefab ) as GameObject;
 2 GameObject go1 = Instantiate( boxPrefab ) as GameObject;
 3 GameObject go2 = go0;
 4 print( go0 == go1 ); // Output: false
 5 print( go0 == go2 ); // Output: true
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Comparison Operators
§ ==! Is Equal To

– Returns true if the values or references compared are 
equivalent
print( 10 == 10 );          // Outputs: True
print( 20 == 10 );          // Outputs: False
print( 1.23f == 3.14f );    // Outputs: False
print( 1.23f == 1.23f );    // Outputs: True
print( 3.14f == Mathf.PI ); // Outputs: False
  // Mathf.PI has more decimal places than 3.14f

– Do NOT confuse == and =
 ==! The comparison operator
  =! The assignment operator
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§ !=! Not Equal To

– Returns true if the values or references compared are 
NOT equivalent
print( 10 != 10 );          // Outputs: False
print( 20 != 10 );          // Outputs: True
print( 1.23f != 3.14f );    // Outputs: True
print( 1.23f != 1.23f );    // Outputs: False
print( 3.14f != Mathf.PI ); // Outputs: True
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§ >! Greater Than

– Returns true if the first operand is greater than the second
print( 10 > 10 );          // Outputs: False
print( 20 > 10 );          // Outputs: True
print( 1.23f > 3.14f );    // Outputs: False
print( 1.23f > 1.23f );    // Outputs: False
print( 3.14f > 1.23f );    // Outputs: True

§ <! Less Than
– Returns true if the first operand is less than the second

print( 10 < 10 );          // Outputs: True
print( 20 < 10 );          // Outputs: False
print( 1.23f < 3.14f );    // Outputs: True
print( 1.23f < 1.23f );    // Outputs: True
print( 3.14f < 1.23f );    // Outputs: False
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– True if the 1st operand is greater than or equal to the 2nd 
print( 10 >= 10 );          // Outputs: True
print( 20 >= 10 );          // Outputs: True
print( 1.23f >= 3.14f );    // Outputs: False
print( 1.23f >= 1.23f );    // Outputs: True
print( 3.14f >= 1.23f );    // Outputs: True

§ <=! Less Than or Equal To
– True if the 1st operand is less than or equal to the 2nd

print( 10 <= 10 );          // Outputs: True
print( 20 <= 10 );          // Outputs: False
print( 1.23f <= 3.14f );    // Outputs: True
print( 1.23f <= 1.23f );    // Outputs: True
print( 3.14f <= 1.23f );    // Outputs: False
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Conditional Statements
§ Control Flow Within Your Programs

if!

if / else!

if / else if / else

switch

§ Can be combined with Boolean operations

§ Make use of braces { }
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§ if! Performs code within braces if the argument 

within parentheses is true 
if (true) {
    print( "This line will print." );
}

if (false) {
    print( "This line will NOT print." );
}

// The output of this code will be:
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if (true) {
    print( "This line will print." );
}

if (false) {
    print( "This line will NOT print." );
}

// The output of this code will be:

//    This line will print.
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Conditional Statements
§ if! Performs code within braces if the argument 

within parentheses is true 
if (true) {
    print( "This line will print." );
}

if (false) {
    print( "This line will NOT print." );
}

// The output of this code will be:

//    This line will print.

§ All the code within the braces of the if statement 
executes

16



Conditional Statements

17



Conditional Statements
§ Combining if statements with boolean operations

17
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§ Combining if statements with boolean operations

bool night = true;
bool fullMoon = false;

if (night) {
    print( "It's night." );
}
if (!fullMoon) {
    print( "The moon is not full." );
}
if (night && fullMoon) {
    print( "Beware werewolves!!!" );
}
if (night && !fullMoon) {
    print( "No werewolves tonight. (Whew!)" );
}

// The output of this code will be:
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Conditional Statements
§ Combining if statements with boolean operations

bool night = true;
bool fullMoon = false;

if (night) {
    print( "It's night." );
}
if (!fullMoon) {
    print( "The moon is not full." );
}
if (night && fullMoon) {
    print( "Beware werewolves!!!" );
}
if (night && !fullMoon) {
    print( "No werewolves tonight. (Whew!)" );
}

// The output of this code will be:
//     It's night.
//     The moon is not full.
//     No werewolves tonight. (Whew!)
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§ Combining if statements with comparison operators

if (10 == 10 ) {
    print( "10 is equal to 10." );
}
if ( 10 > 20 ) {
    print( "10 is greater than 20." );
}
if ( 1.23f <= 3.14f ) {
    print( "1.23 is less than or equal to 3.14." );
}
if ( 1.23f >= 1.23f ) {
    print( "1.23 is greater than or equal to 1.23." );
}
if ( 3.14f != Mathf.PI ) {
    print( "3.14 is not equal to "+Mathf.PI+"." );
    // + can be used to concatenate strings with other data types.
    // When this happens, the other data is converted to a string.
}
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Conditional Statements
§ Combining if statements with comparison operators

if (10 == 10 ) {
    print( "10 is equal to 10." );
}
if ( 10 > 20 ) {
    print( "10 is greater than 20." );
}
if ( 1.23f <= 3.14f ) {
    print( "1.23 is less than or equal to 3.14." );
}
if ( 1.23f >= 1.23f ) {
    print( "1.23 is greater than or equal to 1.23." );
}
if ( 3.14f != Mathf.PI ) {
    print( "3.14 is not equal to "+Mathf.PI+"." );
    // + can be used to concatenate strings with other data types.
    // When this happens, the other data is converted to a string.
}

§ Don't accidentally use   =   in an if statement!!!
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bool night = false;

if (night) {
    print( "It's night." );
} else {
    print( "What are you worried about?" );
}

// The output of this code will be:
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Conditional Statements
§ if / else

– Performs one action if true, and another if false
bool night = false;

if (night) {
    print( "It's night." );
} else {
    print( "What are you worried about?" );
}

// The output of this code will be:
//     What are you worried about?
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§ if / else if / else

– Possible to chain several else if clauses
bool night = true;
bool fullMoon = true;

if (!night) {              // Condition 1 (false)
    print( "It’s daytime. What are you worried about?" );
} else if (fullMoon) {     // Condition 2 (true)
    print( "Beware werewolves!!!" );
} else {                   // Condition 3 (not checked)
    print( "It's night, but the moon is not full." );
}

// The output of this code will be:
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Conditional Statements
§ if / else if / else

– Possible to chain several else if clauses
bool night = true;
bool fullMoon = true;

if (!night) {              // Condition 1 (false)
    print( "It’s daytime. What are you worried about?" );
} else if (fullMoon) {     // Condition 2 (true)
    print( "Beware werewolves!!!" );
} else {                   // Condition 3 (not checked)
    print( "It's night, but the moon is not full." );
}

// The output of this code will be:
//     Beware werewolves!!!
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§ Nested if statements

bool night = true;
bool fullMoon = false;

if (!night) { 
    print( "It’s daytime. Why are you worried about?" );
} else {
    if (fullMoon) { 
        print( "Beware werewolves!!!" );
    } else {
        print( "It's night, but the moon isn't full." );
    }
}

// The output of this code will be:
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Conditional Statements
§ Nested if statements

bool night = true;
bool fullMoon = false;

if (!night) { 
    print( "It’s daytime. Why are you worried about?" );
} else {
    if (fullMoon) { 
        print( "Beware werewolves!!!" );
    } else {
        print( "It's night, but the moon isn't full." );
    }
}

// The output of this code will be:
//     It's night, but the moon isn't full.
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Conditional Statements
§ switch! Alternative to several if statements

– Can only compare for equality
– Can only compare against a single variable against literals 
int num = 3;
switch (num) {  // The variable in parentheses is being compared
case (0):  // Each case is a literal that is compared against num
    print( "The number is zero." );
    break;  // Each case must end with a break statement.
case (1):
    print( "The number is one." );
    break; 
case (2):
    print( "The number is two." );
    break; 
default:  // If none of the other cases are true, default will happen
    print( "The number is more than a couple." );
    break;
}  // The switch statement ends with a closing brace.
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§ switch! Alternative to several if statements

– Can only compare for equality
– Can only compare against a single variable against literals 
int num = 3;
switch (num) {  // The variable in parentheses is being compared
case (0):  // Each case is a literal that is compared against num
    print( "The number is zero." );
    break;  // Each case must end with a break statement.
case (1):
    print( "The number is one." );
    break; 
case (2):
    print( "The number is two." );
    break; 
default:  // If none of the other cases are true, default will happen
    print( "The number is more than a couple." );
    break;
}  // The switch statement ends with a closing brace.

// The output of this code is: The number is more than a couple.
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§ Switch can "fall through" to other cases

int num = 3;
switch (num) {
case (0):
    print( "The number is zero." );
    break;
case (1):
    print( "The number is one." );
    break; 
case (2):
    print( "The number is a couple." );
    break;
case (3):                         // case (3) falls through to case (4)
case (4):                         // case (4) falls through to case (5)
case (5):
    print( "The number is a few." );
    break;
default:
    print( "The number is more than a few." );
    break;
}

23
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§ Switch can "fall through" to other cases

int num = 3;
switch (num) {
case (0):
    print( "The number is zero." );
    break;
case (1):
    print( "The number is one." );
    break; 
case (2):
    print( "The number is a couple." );
    break;
case (3):                         // case (3) falls through to case (4)
case (4):                         // case (4) falls through to case (5)
case (5):
    print( "The number is a few." );
    break;
default:
    print( "The number is more than a few." );
    break;
}

// The output of this code is: The number is a few.
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Chapter 20 – Summary
§ Boolean Operations:      !    &&    ||    &    |

§ Learned about "shorting operations"

§ Boolean operations can be combined

§ Comparison Operators:   ==  !=  >  <  >=  <=

§ Conditional Statements:   if  if…else  switch
– if and switch statements can be combined in complex ways

§ Next Chapter: Loops in C# code!
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