
BOOLEAN OPERATIONS
AND CONDITIONALS

CHAPTER 20

1

Topics

2

Topics
§ Boolean Operations

2

Topics
§ Boolean Operations

– Shorting vs. Non-Shorting

2

Topics
§ Boolean Operations

– Shorting vs. Non-Shorting
– Combination of Boolean Operations

2

Topics
§ Boolean Operations

– Shorting vs. Non-Shorting
– Combination of Boolean Operations

• Order of Operations

2

Topics
§ Boolean Operations

– Shorting vs. Non-Shorting
– Combination of Boolean Operations

• Order of Operations

§ Comparison Operators

2

Topics
§ Boolean Operations

– Shorting vs. Non-Shorting
– Combination of Boolean Operations

• Order of Operations

§ Comparison Operators

§ Conditional Statements

2

Topics
§ Boolean Operations

– Shorting vs. Non-Shorting
– Combination of Boolean Operations

• Order of Operations

§ Comparison Operators

§ Conditional Statements
– if

2

Topics
§ Boolean Operations

– Shorting vs. Non-Shorting
– Combination of Boolean Operations

• Order of Operations

§ Comparison Operators

§ Conditional Statements
– if
– if…else if…else

2

Topics
§ Boolean Operations

– Shorting vs. Non-Shorting
– Combination of Boolean Operations

• Order of Operations

§ Comparison Operators

§ Conditional Statements
– if
– if…else if…else
– switch

2

Boolean Operations

3

Boolean Operations
§ Operations that combine and compare bools

3

Boolean Operations
§ Operations that combine and compare bools

– !! The NOT Operator

3

Boolean Operations
§ Operations that combine and compare bools

– !! The NOT Operator

– &&! The AND Operator

3

Boolean Operations
§ Operations that combine and compare bools

– !! The NOT Operator

– &&! The AND Operator

– ||! The OR Operator

3

Boolean Operations

4

Boolean Operations
§ !! The NOT Operator

4

Boolean Operations
§ !! The NOT Operator

– Pronounced either "not" or "bang"

4

Boolean Operations
§ !! The NOT Operator

– Pronounced either "not" or "bang"
– Reverses value of the bool

4

Boolean Operations
§ !! The NOT Operator

– Pronounced either "not" or "bang"
– Reverses value of the bool

! print(!true); // Outputs: false
! print(!false); // Outputs: true
! print(!(!true)); // Outputs: true (the double negative of true)

4

Boolean Operations
§ !! The NOT Operator

– Pronounced either "not" or "bang"
– Reverses value of the bool

! print(!true); // Outputs: false
! print(!false); // Outputs: true
! print(!(!true)); // Outputs: true (the double negative of true)

– Also called the "logical negation operator"

4

Boolean Operations
§ !! The NOT Operator

– Pronounced either "not" or "bang"
– Reverses value of the bool

! print(!true); // Outputs: false
! print(!false); // Outputs: true
! print(!(!true)); // Outputs: true (the double negative of true)

– Also called the "logical negation operator"
• This differentiates it from ~, the bitwise not operator

4

Boolean Operations

5

Boolean Operations
§ &&! The AND Operator

5

Boolean Operations
§ &&! The AND Operator

– Returns true only if both operands are true

5

Boolean Operations
§ &&! The AND Operator

– Returns true only if both operands are true
print(false && false); // false
print(false && true); // false
print(true && false); // false
print(true && true); // true

5

Boolean Operations

6

Boolean Operations
§ ||! The OR Operator

6

Boolean Operations
§ ||! The OR Operator

– Returns true if either operand is true

6

Boolean Operations
§ ||! The OR Operator

– Returns true if either operand is true
print(false && false); // false
print(false && true); // true
print(true && false); // true
print(true && true); // true

6

Boolean Operations
§ ||! The OR Operator

– Returns true if either operand is true
print(false && false); // false
print(false && true); // true
print(true && false); // true
print(true && true); // true

– | (the pipe) is Shift-Backslash

6

Boolean Operations
§ ||! The OR Operator

– Returns true if either operand is true
print(false && false); // false
print(false && true); // true
print(true && false); // true
print(true && true); // true

– | (the pipe) is Shift-Backslash
• Just above the return or enter key on a US keyboard

6

Boolean Operations

7

Boolean Operations
§ Shorting vs. Non-Shorting Boolean Operators

7

Boolean Operations
§ Shorting vs. Non-Shorting Boolean Operators

– && and || are shorting operators

7

Boolean Operations
§ Shorting vs. Non-Shorting Boolean Operators

– && and || are shorting operators
• If the first operand of && is false, the second is not evaluated

7

Boolean Operations
§ Shorting vs. Non-Shorting Boolean Operators

– && and || are shorting operators
• If the first operand of && is false, the second is not evaluated
• If the first operand of || is true, the second is not evaluated

7

Boolean Operations
§ Shorting vs. Non-Shorting Boolean Operators

– && and || are shorting operators
• If the first operand of && is false, the second is not evaluated
• If the first operand of || is true, the second is not evaluated

– & and | are non-shorting operators

7

Boolean Operations
§ Shorting vs. Non-Shorting Boolean Operators

– && and || are shorting operators
• If the first operand of && is false, the second is not evaluated
• If the first operand of || is true, the second is not evaluated

– & and | are non-shorting operators
• Both operands are evaluated regardless of value

7

Boolean Operations
§ Shorting vs. Non-Shorting Boolean Operators

– && and || are shorting operators
• If the first operand of && is false, the second is not evaluated
• If the first operand of || is true, the second is not evaluated

– & and | are non-shorting operators
• Both operands are evaluated regardless of value

– & and | are also bitwise operators

7

Boolean Operations
§ Shorting vs. Non-Shorting Boolean Operators

– && and || are shorting operators
• If the first operand of && is false, the second is not evaluated
• If the first operand of || is true, the second is not evaluated

– & and | are non-shorting operators
• Both operands are evaluated regardless of value

– & and | are also bitwise operators
• & and | compare each bit of the values passed into them

7

Boolean Operations
§ Shorting vs. Non-Shorting Boolean Operators

– && and || are shorting operators
• If the first operand of && is false, the second is not evaluated
• If the first operand of || is true, the second is not evaluated

– & and | are non-shorting operators
• Both operands are evaluated regardless of value

– & and | are also bitwise operators
• & and | compare each bit of the values passed into them
• Bitwise operators will be used much later when dealing with Unity

layers and collisions

7

Boolean Operations

8

Boolean Operations
§ Combining Boolean Operations

8

Boolean Operations
§ Combining Boolean Operations

– Can combine several on a single line

8

Boolean Operations
§ Combining Boolean Operations

– Can combine several on a single line
! bool tf = true || false && true;

8

Boolean Operations
§ Combining Boolean Operations

– Can combine several on a single line
! bool tf = true || false && true;

– Must follow order of operations

8

Boolean Operations
§ Combining Boolean Operations

– Can combine several on a single line
! bool tf = true || false && true;

– Must follow order of operations
!! NOT
&! Non-Shorting AND / Bitwise AND
|! Non-Shorting OR / Bitwise OR
&&! AND
||! OR

8

Boolean Operations
§ Combining Boolean Operations

– Can combine several on a single line
! bool tf = true || false && true;

– Must follow order of operations
!! NOT
&! Non-Shorting AND / Bitwise AND
|! Non-Shorting OR / Bitwise OR
&&! AND
||! OR

– The line above would be interpreted as:

8

Boolean Operations
§ Combining Boolean Operations

– Can combine several on a single line
! bool tf = true || false && true;

– Must follow order of operations
!! NOT
&! Non-Shorting AND / Bitwise AND
|! Non-Shorting OR / Bitwise OR
&&! AND
||! OR

– The line above would be interpreted as:
! bool tf = true || (false && true);! // true

8

Boolean Operations
§ Combining Boolean Operations

– Can combine several on a single line
! bool tf = true || false && true;

– Must follow order of operations
!! NOT
&! Non-Shorting AND / Bitwise AND
|! Non-Shorting OR / Bitwise OR
&&! AND
||! OR

– The line above would be interpreted as:
! bool tf = true || (false && true);! // true

– It's best to always use parentheses to enforce the order in
which you want the evaluation to take place!

8

Comparison Operators

9

Comparison Operators
§ Allow the comparison of two values

9

Comparison Operators
§ Allow the comparison of two values

§ Return a bool (either true or false)

9

Comparison Operators
§ Allow the comparison of two values

§ Return a bool (either true or false)
==! Is Equal To

9

Comparison Operators
§ Allow the comparison of two values

§ Return a bool (either true or false)
==! Is Equal To
!=! Not Equal To

9

Comparison Operators
§ Allow the comparison of two values

§ Return a bool (either true or false)
==! Is Equal To
!=! Not Equal To
>! Greater Than

9

Comparison Operators
§ Allow the comparison of two values

§ Return a bool (either true or false)
==! Is Equal To
!=! Not Equal To
>! Greater Than
<! Less Than

9

Comparison Operators
§ Allow the comparison of two values

§ Return a bool (either true or false)
==! Is Equal To
!=! Not Equal To
>! Greater Than
<! Less Than
>=! Greater Than or Equal To

9

Comparison Operators
§ Allow the comparison of two values

§ Return a bool (either true or false)
==! Is Equal To
!=! Not Equal To
>! Greater Than
<! Less Than
>=! Greater Than or Equal To
<=! Less Than or Equal To

9

COMPARISON BY VALUE OR REFERENCE

10

COMPARISON BY VALUE OR REFERENCE

§ Simple variables are compared by value

10

COMPARISON BY VALUE OR REFERENCE

§ Simple variables are compared by value
– bool, int, float, char, string, Vector3, Color, Quaternion

10

COMPARISON BY VALUE OR REFERENCE

§ Simple variables are compared by value
– bool, int, float, char, string, Vector3, Color, Quaternion

§ More complex variables are compared by reference

10

COMPARISON BY VALUE OR REFERENCE

§ Simple variables are compared by value
– bool, int, float, char, string, Vector3, Color, Quaternion

§ More complex variables are compared by reference
– When variables are compared by reference, the comparison

is not of their internal values but of whether they point to the
same location in memory

10

COMPARISON BY VALUE OR REFERENCE

§ Simple variables are compared by value
– bool, int, float, char, string, Vector3, Color, Quaternion

§ More complex variables are compared by reference
– When variables are compared by reference, the comparison

is not of their internal values but of whether they point to the
same location in memory

– GameObject, Material, Renderer, HelloWorld (and other C#
classes you write)

10

COMPARISON BY VALUE OR REFERENCE

§ Simple variables are compared by value
– bool, int, float, char, string, Vector3, Color, Quaternion

§ More complex variables are compared by reference
– When variables are compared by reference, the comparison

is not of their internal values but of whether they point to the
same location in memory

– GameObject, Material, Renderer, HelloWorld (and other C#
classes you write)
 1 GameObject go0 = Instantiate(boxPrefab) as GameObject;
 2 GameObject go1 = Instantiate(boxPrefab) as GameObject;
 3 GameObject go2 = go0;
 4 print(go0 == go1); // Output: false
 5 print(go0 == go2); // Output: true

10

Comparison Operators

11

Comparison Operators
§ ==! Is Equal To

11

Comparison Operators
§ ==! Is Equal To

– Returns true if the values or references compared are
equivalent

11

Comparison Operators
§ ==! Is Equal To

– Returns true if the values or references compared are
equivalent
print(10 == 10); // Outputs: True
print(20 == 10); // Outputs: False
print(1.23f == 3.14f); // Outputs: False
print(1.23f == 1.23f); // Outputs: True
print(3.14f == Mathf.PI); // Outputs: False
 // Mathf.PI has more decimal places than 3.14f

11

Comparison Operators
§ ==! Is Equal To

– Returns true if the values or references compared are
equivalent
print(10 == 10); // Outputs: True
print(20 == 10); // Outputs: False
print(1.23f == 3.14f); // Outputs: False
print(1.23f == 1.23f); // Outputs: True
print(3.14f == Mathf.PI); // Outputs: False
 // Mathf.PI has more decimal places than 3.14f

– Do NOT confuse == and =

11

Comparison Operators
§ ==! Is Equal To

– Returns true if the values or references compared are
equivalent
print(10 == 10); // Outputs: True
print(20 == 10); // Outputs: False
print(1.23f == 3.14f); // Outputs: False
print(1.23f == 1.23f); // Outputs: True
print(3.14f == Mathf.PI); // Outputs: False
 // Mathf.PI has more decimal places than 3.14f

– Do NOT confuse == and =
 ==! The comparison operator

11

Comparison Operators
§ ==! Is Equal To

– Returns true if the values or references compared are
equivalent
print(10 == 10); // Outputs: True
print(20 == 10); // Outputs: False
print(1.23f == 3.14f); // Outputs: False
print(1.23f == 1.23f); // Outputs: True
print(3.14f == Mathf.PI); // Outputs: False
 // Mathf.PI has more decimal places than 3.14f

– Do NOT confuse == and =
 ==! The comparison operator
 =! The assignment operator

11

Comparison Operators

12

Comparison Operators
§ !=! Not Equal To

12

Comparison Operators
§ !=! Not Equal To

– Returns true if the values or references compared are
NOT equivalent

12

Comparison Operators
§ !=! Not Equal To

– Returns true if the values or references compared are
NOT equivalent
print(10 != 10); // Outputs: False
print(20 != 10); // Outputs: True
print(1.23f != 3.14f); // Outputs: True
print(1.23f != 1.23f); // Outputs: False
print(3.14f != Mathf.PI); // Outputs: True

12

Comparison Operators

13

Comparison Operators
§ >! Greater Than

13

Comparison Operators
§ >! Greater Than

– Returns true if the first operand is greater than the second

13

Comparison Operators
§ >! Greater Than

– Returns true if the first operand is greater than the second
print(10 > 10); // Outputs: False
print(20 > 10); // Outputs: True
print(1.23f > 3.14f); // Outputs: False
print(1.23f > 1.23f); // Outputs: False
print(3.14f > 1.23f); // Outputs: True

13

Comparison Operators
§ >! Greater Than

– Returns true if the first operand is greater than the second
print(10 > 10); // Outputs: False
print(20 > 10); // Outputs: True
print(1.23f > 3.14f); // Outputs: False
print(1.23f > 1.23f); // Outputs: False
print(3.14f > 1.23f); // Outputs: True

§ <! Less Than

13

Comparison Operators
§ >! Greater Than

– Returns true if the first operand is greater than the second
print(10 > 10); // Outputs: False
print(20 > 10); // Outputs: True
print(1.23f > 3.14f); // Outputs: False
print(1.23f > 1.23f); // Outputs: False
print(3.14f > 1.23f); // Outputs: True

§ <! Less Than
– Returns true if the first operand is less than the second

13

Comparison Operators
§ >! Greater Than

– Returns true if the first operand is greater than the second
print(10 > 10); // Outputs: False
print(20 > 10); // Outputs: True
print(1.23f > 3.14f); // Outputs: False
print(1.23f > 1.23f); // Outputs: False
print(3.14f > 1.23f); // Outputs: True

§ <! Less Than
– Returns true if the first operand is less than the second

print(10 < 10); // Outputs: True
print(20 < 10); // Outputs: False
print(1.23f < 3.14f); // Outputs: True
print(1.23f < 1.23f); // Outputs: True
print(3.14f < 1.23f); // Outputs: False

13

Comparison Operators

14

Comparison Operators
§ >=! Greater Than or Equal To

14

Comparison Operators
§ >=! Greater Than or Equal To

– True if the 1st operand is greater than or equal to the 2nd

14

Comparison Operators
§ >=! Greater Than or Equal To

– True if the 1st operand is greater than or equal to the 2nd
print(10 >= 10); // Outputs: True
print(20 >= 10); // Outputs: True
print(1.23f >= 3.14f); // Outputs: False
print(1.23f >= 1.23f); // Outputs: True
print(3.14f >= 1.23f); // Outputs: True

14

Comparison Operators
§ >=! Greater Than or Equal To

– True if the 1st operand is greater than or equal to the 2nd
print(10 >= 10); // Outputs: True
print(20 >= 10); // Outputs: True
print(1.23f >= 3.14f); // Outputs: False
print(1.23f >= 1.23f); // Outputs: True
print(3.14f >= 1.23f); // Outputs: True

§ <=! Less Than or Equal To

14

Comparison Operators
§ >=! Greater Than or Equal To

– True if the 1st operand is greater than or equal to the 2nd
print(10 >= 10); // Outputs: True
print(20 >= 10); // Outputs: True
print(1.23f >= 3.14f); // Outputs: False
print(1.23f >= 1.23f); // Outputs: True
print(3.14f >= 1.23f); // Outputs: True

§ <=! Less Than or Equal To
– True if the 1st operand is less than or equal to the 2nd

14

Comparison Operators
§ >=! Greater Than or Equal To

– True if the 1st operand is greater than or equal to the 2nd
print(10 >= 10); // Outputs: True
print(20 >= 10); // Outputs: True
print(1.23f >= 3.14f); // Outputs: False
print(1.23f >= 1.23f); // Outputs: True
print(3.14f >= 1.23f); // Outputs: True

§ <=! Less Than or Equal To
– True if the 1st operand is less than or equal to the 2nd

print(10 <= 10); // Outputs: True
print(20 <= 10); // Outputs: False
print(1.23f <= 3.14f); // Outputs: True
print(1.23f <= 1.23f); // Outputs: True
print(3.14f <= 1.23f); // Outputs: False

14

Conditional Statements

15

Conditional Statements
§ Control Flow Within Your Programs

15

Conditional Statements
§ Control Flow Within Your Programs

if!

15

Conditional Statements
§ Control Flow Within Your Programs

if!

if / else!

15

Conditional Statements
§ Control Flow Within Your Programs

if!

if / else!

if / else if / else

15

Conditional Statements
§ Control Flow Within Your Programs

if!

if / else!

if / else if / else

switch

15

Conditional Statements
§ Control Flow Within Your Programs

if!

if / else!

if / else if / else

switch

§ Can be combined with Boolean operations

15

Conditional Statements
§ Control Flow Within Your Programs

if!

if / else!

if / else if / else

switch

§ Can be combined with Boolean operations

§ Make use of braces { }

15

Conditional Statements

16

Conditional Statements
§ if! Performs code within braces if the argument

within parentheses is true

16

Conditional Statements
§ if! Performs code within braces if the argument

within parentheses is true
if (true) {
 print("This line will print.");
}

if (false) {
 print("This line will NOT print.");
}

// The output of this code will be:

16

Conditional Statements
§ if! Performs code within braces if the argument

within parentheses is true
if (true) {
 print("This line will print.");
}

if (false) {
 print("This line will NOT print.");
}

// The output of this code will be:

// This line will print.

16

Conditional Statements
§ if! Performs code within braces if the argument

within parentheses is true
if (true) {
 print("This line will print.");
}

if (false) {
 print("This line will NOT print.");
}

// The output of this code will be:

// This line will print.

§ All the code within the braces of the if statement
executes

16

Conditional Statements

17

Conditional Statements
§ Combining if statements with boolean operations

17

Conditional Statements
§ Combining if statements with boolean operations

bool night = true;
bool fullMoon = false;

if (night) {
 print("It's night.");
}
if (!fullMoon) {
 print("The moon is not full.");
}
if (night && fullMoon) {
 print("Beware werewolves!!!");
}
if (night && !fullMoon) {
 print("No werewolves tonight. (Whew!)");
}

// The output of this code will be:

17

Conditional Statements
§ Combining if statements with boolean operations

bool night = true;
bool fullMoon = false;

if (night) {
 print("It's night.");
}
if (!fullMoon) {
 print("The moon is not full.");
}
if (night && fullMoon) {
 print("Beware werewolves!!!");
}
if (night && !fullMoon) {
 print("No werewolves tonight. (Whew!)");
}

// The output of this code will be:
// It's night.
// The moon is not full.
// No werewolves tonight. (Whew!)

17

Conditional Statements

18

Conditional Statements
§ Combining if statements with comparison operators

18

Conditional Statements
§ Combining if statements with comparison operators

if (10 == 10) {
 print("10 is equal to 10.");
}
if (10 > 20) {
 print("10 is greater than 20.");
}
if (1.23f <= 3.14f) {
 print("1.23 is less than or equal to 3.14.");
}
if (1.23f >= 1.23f) {
 print("1.23 is greater than or equal to 1.23.");
}
if (3.14f != Mathf.PI) {
 print("3.14 is not equal to "+Mathf.PI+".");
 // + can be used to concatenate strings with other data types.
 // When this happens, the other data is converted to a string.
}

18

Conditional Statements
§ Combining if statements with comparison operators

if (10 == 10) {
 print("10 is equal to 10.");
}
if (10 > 20) {
 print("10 is greater than 20.");
}
if (1.23f <= 3.14f) {
 print("1.23 is less than or equal to 3.14.");
}
if (1.23f >= 1.23f) {
 print("1.23 is greater than or equal to 1.23.");
}
if (3.14f != Mathf.PI) {
 print("3.14 is not equal to "+Mathf.PI+".");
 // + can be used to concatenate strings with other data types.
 // When this happens, the other data is converted to a string.
}

§ Don't accidentally use = in an if statement!!!

18

Conditional Statements

19

Conditional Statements
§ if / else

19

Conditional Statements
§ if / else

– Performs one action if true, and another if false

19

Conditional Statements
§ if / else

– Performs one action if true, and another if false
bool night = false;

if (night) {
 print("It's night.");
} else {
 print("What are you worried about?");
}

// The output of this code will be:

19

Conditional Statements
§ if / else

– Performs one action if true, and another if false
bool night = false;

if (night) {
 print("It's night.");
} else {
 print("What are you worried about?");
}

// The output of this code will be:
// What are you worried about?

19

Conditional Statements

20

Conditional Statements
§ if / else if / else

20

Conditional Statements
§ if / else if / else

– Possible to chain several else if clauses

20

Conditional Statements
§ if / else if / else

– Possible to chain several else if clauses
bool night = true;
bool fullMoon = true;

if (!night) { // Condition 1 (false)
 print("It’s daytime. What are you worried about?");
} else if (fullMoon) { // Condition 2 (true)
 print("Beware werewolves!!!");
} else { // Condition 3 (not checked)
 print("It's night, but the moon is not full.");
}

// The output of this code will be:

20

Conditional Statements
§ if / else if / else

– Possible to chain several else if clauses
bool night = true;
bool fullMoon = true;

if (!night) { // Condition 1 (false)
 print("It’s daytime. What are you worried about?");
} else if (fullMoon) { // Condition 2 (true)
 print("Beware werewolves!!!");
} else { // Condition 3 (not checked)
 print("It's night, but the moon is not full.");
}

// The output of this code will be:
// Beware werewolves!!!

20

Conditional Statements

21

Conditional Statements
§ Nested if statements

21

Conditional Statements
§ Nested if statements

bool night = true;
bool fullMoon = false;

if (!night) {
 print("It’s daytime. Why are you worried about?");
} else {
 if (fullMoon) {
 print("Beware werewolves!!!");
 } else {
 print("It's night, but the moon isn't full.");
 }
}

// The output of this code will be:

21

Conditional Statements
§ Nested if statements

bool night = true;
bool fullMoon = false;

if (!night) {
 print("It’s daytime. Why are you worried about?");
} else {
 if (fullMoon) {
 print("Beware werewolves!!!");
 } else {
 print("It's night, but the moon isn't full.");
 }
}

// The output of this code will be:
// It's night, but the moon isn't full.

21

Conditional Statements

22

Conditional Statements
§ switch! Alternative to several if statements

22

Conditional Statements
§ switch! Alternative to several if statements

– Can only compare for equality

22

Conditional Statements
§ switch! Alternative to several if statements

– Can only compare for equality
– Can only compare against a single variable against literals

22

Conditional Statements
§ switch! Alternative to several if statements

– Can only compare for equality
– Can only compare against a single variable against literals
int num = 3;
switch (num) { // The variable in parentheses is being compared
case (0): // Each case is a literal that is compared against num
 print("The number is zero.");
 break; // Each case must end with a break statement.
case (1):
 print("The number is one.");
 break;
case (2):
 print("The number is two.");
 break;
default: // If none of the other cases are true, default will happen
 print("The number is more than a couple.");
 break;
} // The switch statement ends with a closing brace.

22

Conditional Statements
§ switch! Alternative to several if statements

– Can only compare for equality
– Can only compare against a single variable against literals
int num = 3;
switch (num) { // The variable in parentheses is being compared
case (0): // Each case is a literal that is compared against num
 print("The number is zero.");
 break; // Each case must end with a break statement.
case (1):
 print("The number is one.");
 break;
case (2):
 print("The number is two.");
 break;
default: // If none of the other cases are true, default will happen
 print("The number is more than a couple.");
 break;
} // The switch statement ends with a closing brace.

// The output of this code is: The number is more than a couple.

22

Conditional Statements

23

Conditional Statements
§ Switch can "fall through" to other cases

23

Conditional Statements
§ Switch can "fall through" to other cases

int num = 3;
switch (num) {
case (0):
 print("The number is zero.");
 break;
case (1):
 print("The number is one.");
 break;
case (2):
 print("The number is a couple.");
 break;
case (3): // case (3) falls through to case (4)
case (4): // case (4) falls through to case (5)
case (5):
 print("The number is a few.");
 break;
default:
 print("The number is more than a few.");
 break;
}

23

Conditional Statements
§ Switch can "fall through" to other cases

int num = 3;
switch (num) {
case (0):
 print("The number is zero.");
 break;
case (1):
 print("The number is one.");
 break;
case (2):
 print("The number is a couple.");
 break;
case (3): // case (3) falls through to case (4)
case (4): // case (4) falls through to case (5)
case (5):
 print("The number is a few.");
 break;
default:
 print("The number is more than a few.");
 break;
}

// The output of this code is: The number is a few.

23

Chapter 20 – Summary

24

Chapter 20 – Summary
§ Boolean Operations: ! && || & |

24

Chapter 20 – Summary
§ Boolean Operations: ! && || & |

§ Learned about "shorting operations"

24

Chapter 20 – Summary
§ Boolean Operations: ! && || & |

§ Learned about "shorting operations"

§ Boolean operations can be combined

24

Chapter 20 – Summary
§ Boolean Operations: ! && || & |

§ Learned about "shorting operations"

§ Boolean operations can be combined

§ Comparison Operators: == != > < >= <=

24

Chapter 20 – Summary
§ Boolean Operations: ! && || & |

§ Learned about "shorting operations"

§ Boolean operations can be combined

§ Comparison Operators: == != > < >= <=

§ Conditional Statements: if if…else switch

24

Chapter 20 – Summary
§ Boolean Operations: ! && || & |

§ Learned about "shorting operations"

§ Boolean operations can be combined

§ Comparison Operators: == != > < >= <=

§ Conditional Statements: if if…else switch
– if and switch statements can be combined in complex ways

24

Chapter 20 – Summary
§ Boolean Operations: ! && || & |

§ Learned about "shorting operations"

§ Boolean operations can be combined

§ Comparison Operators: == != > < >= <=

§ Conditional Statements: if if…else switch
– if and switch statements can be combined in complex ways

§ Next Chapter: Loops in C# code!

24

